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Abstract—Existing systems for ball trajectory and spin estimation
use embedded sensors or expensive high-frame-rate cameras which
severely limits their accessibility. We propose an easy-to-setup low-
cost vision sensor pipeline using two static asynchronous consumer-
grade cameras. We also propose the use of epipolar geometry for
synchronizing the cameras. We estimate 3D ball trajectory and spin
with only one distinguishable feature on the ball. Mixture of Gaus-
sians and adaptive color-based thresholding are used to localize the
ball in 2D followed by triangulation. To estimate spin magnitude and axis, we employ feature detection and plane fitting.
Extensive experiments with three different balls across multiple varied environments are reported and the approach is
validated by arriving at the standard gravitational acceleration value from our estimated ball trajectory. For validating the
spin, we compare our results with the true spin for a rotating ball fixed on a motor shaft. The average reprojection error
was below 10 pixels for all our experiments and a maximum deviation of 17 RPM in spin magnitude was observed.

Index Terms—Ball detection, motion analysis, trajectory estimation, spin estimation, camera synchronization.

I. INTRODUCTION
Trajectory and spin estimation are fundamental tasks in ball sports

[1]. Ball trajectory estimation involves finding the 3D location of the
ball at any given time. Some sports have adopted using embedded
Inertial Measurement Units (IMUs) to obtain ball trajectories [2] while
others deploy proprietary setups comprising multiple expensive and
sophisticated high-end vision sensors [4], [6]–[11]. In contrast, spin
estimation is relatively under-explored [3], [4], [6], [12]–[14] despite
being an integral part of advanced game-plays in most ball sports.

Using IMU enabled balls which are ball-specific or specialized
sophisticated vision-sensor setups is often expensive which precludes
their accessibility to individual players who could benefit from it
during training and coaching sessions. We propose an easy-to-setup
vision sensor pipeline for tracking a ball in 3D and for estimating
3D spin using two asynchronous consumer-grade cameras. Since the
knowledge of corresponding 2D locations in at least two views at
the same instant is a prerequisite for estimating 3D position, we
propose a new vision-based approach for video synchronization as
part of our pipeline.

For dynamic objects, there can be significant changes in scale
and illumination during motion. Additionally, estimating spin for
symmetric moving objects like a ball is highly challenging since it
is difficult to detect the same distinguishing features across frames.
Deep-learning (DL) based approaches for 2D object localization
are data-dependent and do not generalize well across viewpoints
and environmental conditions which are commonly encountered in
end-user applications. Our approach can adaptively adjust to a new
environment and ball, unlike DL methods which require a lot of data
along with ground truth annotations for retraining. The proposed
pipeline can be used to automatically generate annotations for DL
models to aid with large-scale dataset creation. Our approach offers
a potential low-cost alternative to the expensive Hawk-Eye [6] match
officiating system. To summarize, our major contributions are -
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1) We propose a pipeline to estimate ball trajectory and the 3D
spin of a ball using a pair of unconstrained, asynchronous and
static consumer-grade cameras.

2) Our approach estimates the ball centers in 2D in both the
cameras using two-stage filtering. We use epipolar geometry
to synchronize the captured videos and perform triangulation
to locate the ball center in 3D. Feature detection and plane
fitting is used for spin analysis.

3) We show results with multiple balls in different environments
and validate our results on real data. Our method outperforms
DL approaches especially in terms of generalizability across
varying viewpoints and in detecting the moving ball.

II. PROPOSED METHODOLOGY
We want to estimate ball trajectory 𝑋 (𝑡) ∈ R3, spin magnitude
𝜔est

mag ∈ R+ and spin axis 𝜔est
axis ∈ R3 with | |𝜔est

axis | | = 1, given two
cameras looking at the object of interest. Let 𝐶𝑚1 and 𝐶𝑚2 be
calibrated cameras with projection matrices P1 = K1 [R1 |𝑡1] and
P2 = K2 [R2 |𝑡2], respectively, placed some distance apart on tripods.
The ball is being thrown from between them. Fig. 1 gives an overview
of our proposed pipeline.
A. Ball Detection and Localization in 2D
The first step is to localize the ball in 2D. Let 𝐼𝑛 be the undistorted
𝑛𝑡ℎ frame of a video taken by 𝐶𝑚1 or 𝐶𝑚2 . We use the pixel-based
Mixture of Gaussians (MoG) model [15] to detect foreground pixels
corresponding to the moving regions in each frame. This gives us
a binary mask 𝐹𝑛 = 𝑀𝑜𝐺 (𝐼𝑛). But this is often noisy due to the
motion of random objects and shadows. To address this issue, we
use color-based thresholding at every spatial location 𝑥 in 𝐼𝑛 and

get 𝐹color
𝑛 (𝑥) =

{
1, 𝑇𝑚𝑖𝑛 ≤ 𝐼𝑛 (𝑥) ≤ 𝑇𝑚𝑎𝑥

0, otherwise
, where 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥

are the minimum and maximum values of H, S and V in HSV space
taken from a sampled region of interest (RoI) on the ball. 𝑇𝑚𝑖𝑛,
𝑇𝑚𝑎𝑥 and 𝐼𝑛 (𝑥) are all 3× 1 vectors and these thresholds need to be
adaptively selected only once for a new environment and setup. More
details are provided in supplementary Sec. S1. The final ball mask
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𝐹𝐵
𝑛 is then obtained using 𝐹𝐵

𝑛 = 𝐹𝑛 ⊙ 𝐹color
𝑛 where, ⊙ is pixel-wise

multiplication. We then fit a circular contour with maximum area on
the derived mask 𝐹𝐵

𝑛 to localize the ball. The center of the circular
contour, 𝑐𝑛, is our estimated ball center while the 2D radius 𝑟𝑛

localizes the ball in the image plane.
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Fig. 1: Overview of our proposed pipeline for (a) estimating 3D ball trajectory and
(b) 3D spin. We experiment with the three balls depicted in (c) and report results for
different environments in Table 2.

B. Synchronization
Due to the dynamics of the scene, the efficacy of our setup relies on
careful time-synchronization of the cameras. We experiment with two
approaches for synchronization - (a) Audio-based and (b) Audio-free.
The audio-based approach for video synchronization (Approach I)
uses a freely available software [16] to align corresponding video
frames by comparing their audio similarities. In contrast, the proposed
audio-free approach is grounded in epipolar geometry. For our
approach, we first need to estimate the fundamental matrix, F. Two
variants exist based on how F is estimated. When sufficient features
are present in the scene and SIFT features [17] are used along with
the 7-point algorithm [18] to estimate F, we denote it as Approach II
A. Approach II B on the other hand uses camera parameters estimated
during calibration to obtain F using the equation F = K−𝑇

2 [t]XRK−1
1 .

where, K1 and K2 are the camera intrinsic matrices, [t]X is the skew-
symmetric matrix representation of the translation between 𝐶𝑚1 and
𝐶𝑚2 which was derived to be 𝑡 = 𝑡2 − R2R𝑇

1 𝑡1. Here, R1 and R2 are
the rotation matrices and 𝑡1 and 𝑡2 are the translation vectors for
cameras 𝐶𝑚1 and 𝐶𝑚2 respectively. The rotation between the two
cameras was derived to be R = R2R𝑇

1 . Let the set of detected ball
centers in videos 𝑉𝐶1 and 𝑉𝐶2 be 𝐵1 and 𝐵2 respectively. We then
randomly select a center 𝑏1

𝑚 from 𝑉𝐶1 corresponding to the 𝑚𝑡ℎ

frame and find its corresponding epipolar line in 𝑉𝐶2 as 𝑙 = F𝑏1
𝑚. We

then iterate over the set 𝐵2 and the frame with detected ball center
having minimum perpendicular distance from 𝑙 is our corresponding
frame in 𝑉𝐶2 for 𝑚𝑡ℎ frame in 𝑉𝐶1 . The synchronized videos are
then used for 3D localization. Note that the ball center detected in
multiple frames can be used for more robust synchronization. See
Supplementary (Sec. S6) for details.

C. Localization in 3D
For 3D localization, we triangulate the detected ball centers. In
particular, if frame 𝑖 in 𝐶𝑚1 and frame 𝑗 in 𝐶𝑚2 correspond to the
same time instant, t, and 𝑐1

𝑖 and 𝑐2
𝑗 are the corresponding 2D ball

centers with P1, P2 being the respective projection matrices, then,
𝑐1
𝑖
= P1𝑋 and 𝑐2

𝑖
= P2𝑋 where 𝑋 is the ball center in 3D. This lets us

write 𝑐1
𝑖
×P1𝑋 = 0 and 𝑐2

𝑗
×P2𝑋 = 0 where × denotes cross-product.

Gauss-Newton optimization is then used to solve for 𝑋 (𝑡) with the
initial estimate obtained using Direct Linear Transform (DLT) [19].

(a) (b)
Fig. 2: The figure illustrates our approach of (a) translation motion component
compensation to mimic pure rotational motion, and (b) plane and normal estimation
through feature points on the rotating ball.

D. Spin Analysis
To estimate the spin magnitude, 𝜔est

mag, we crop a bounding box of
size 1.6𝑟𝑛×1.6𝑟𝑛 around the detected 2D ball center 𝑐𝑛 and perform
feature detection within it for each frame 𝑛. Note that 𝑟𝑛 is the radius
of the ball in the image plane and the side length of bounding box
is reduced empirically to 1.6𝑟𝑛 from 2𝑟𝑛 to avoid mis-detections
due to the presence of background pixels within the bounding box.
The detection of the feature in the set of all ordered frames is

modeled as a square wave, 𝑓sq (𝑛) =
{

1, if feature is detected

0, otherwise
. The

Discrete Fourier Transform (DFT) of 𝑓sq is taken and the frequency
corresponding to the dominant magnitude in the spectrum is the
estimated spin magnitude. Mathematically, 𝜔est

mag =
𝐹𝑠𝑘est
𝑀

×60, where,
𝑘𝑒𝑠𝑡 is the most dominant component in the DFT of 𝑓sq, 𝑀 is the
length of 𝑓sq which we consider as one or more complete cycles
of the square wave, 𝐹𝑠 is the camera frame rate and 𝜔est

mag is the
estimated spin magnitude in rotations per minute (RPM).

To estimate the spin-axis of the rotating ball, we employ a 3D plane-
fitting approach. Given one distinguishing feature on the ball, we first
localize this feature in 2D and then estimate its 3D location using
triangulation. Let 𝐼1

𝑚 and 𝐼1
𝑛 be frames at two different time instants for

the same video, and (𝑀𝑚, 𝑀𝑛) and (𝑋𝑚, 𝑋𝑛) be the corresponding 3D
locations of the feature centers and the centers of the ball, respectively.
We obtain the 3D displacement of the ball center as Δ𝑇𝑛𝑚 = 𝑋𝑛−𝑋𝑚

between frames𝑛 and𝑚. We compensate for the translation component
between the two frames using 𝑀

′

𝑛 = 𝑀𝑛 − Δ𝑇𝑛𝑚 where 𝑀
′
𝑛 is the

marker location in 3D for frame 𝑛 with the translation component
eliminated. This process has also been depicted in Fig. 2. Once we
have nullified the translation components of at least three feature
centers, we fit a plane, Φ, defined as 𝑍 = 𝑎𝑋 + 𝑏𝑌 + 𝑐 through the
centers using least squares minimization. The corresponding unit
normal 𝜔est

axis = ±[−𝑎,−𝑏, 1]/
√
𝑎2 + 𝑏2 + 1 gives the spin axis of the

ball. Note that both the unit normal represent the same axis but
in opposite directions. Additionally, while only one distinguishable
feature is necessary, multiple distinct features on the ball can be used
to improve robustness of spin estimation as shown in Sec. III.

III. EXPERIMENTS
We show the effectiveness of our approach on three different types
of balls - (1) Ball A: a light-weight red coloured ball (2) Ball B:
standard football (3) Ball C: a standard Size-5 basketball and use two
GoPro Hero Black 10 cameras mounted on their standard tripods, in
our setup. For Ball A, a small circular green marker is stuck on the
ball to serve as a distinguishable feature while the manufacturer logo
is used as the distinguishable feature for Ball B and Ball C. Videos
are recorded at 120 fps and the resolution is kept at 1920× 1080 for
Ball A and at 3840 × 2160 for Ball B and Ball C. This is done to
capture finer details of the logo for Balls B and C. The experiments
are conducted in one indoor and two outdoor environments for each
of the three balls. The indoor setup (E1) is an enclosed room with
artificial lighting, and the first outdoor setup (E2) is a residential area
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with concrete structures. The second set of outdoor experiments is
conducted in open areas, and we consider an open field for Ball A
(E3), a football field for Ball B (E4), and a basketball court for Ball C
(E5). This is done to closely mimic the environmental setups where
our work has potential applications. To establish the robustness of our
approach to different lighting conditions, we conduct experiments
on Ball B and Ball C under bright sunny conditions (E4a, E5a) as
well as on overcast cloudy days (E4b, E5b).

All the processing was performed on a system with Intel Xeon(R)
CPU E5-1620 v3 @ 3.50GHz × 8. MATLAB was used for camera
calibration with a 10 × 7 checkerboard having a square size of 34
mm. We fix our world coordinates to have the +Z axis parallel to
the camera optical axis and +Y axis towards the ground. Radial
distortion was removed for each video during pre-processing.

Synchronization was done using each of the three approaches
detailed in Sec.II-B and the results are shown in Table 1. Ground
truth is obtained by manually examining the alignment of frames
corresponding to the instant of first ball bounce in both videos. We
report the mean and standard deviation of error in the alignment of
frames over three ball throws each for different types of balls, in
indoor as well as outdoor settings. The overall errors are low for our
proposed approaches (Approach II A and II B), with Approach II A
giving the best results. This clearly shows the efficacy of our proposed
approach in automatically aligning frames from asynchronous videos,
even in the absence of any audio cues or special hardware.

Table 1: The mean and standard deviation (Std. Dev.) of frame differences (FD) from
ground truth for different balls and environments.

Approach I Approach II A Approach II B
Mean FD Std. Dev. FD Mean FD Std. Dev. FD Mean FD Std. Dev. FD

E1 0.33 0.58 1.33 0.58 0.67 0.58
E2 0.33 0.58 1.33 0.58 1.33 1.15Ball A
E3 1.00 1.00 0.33 0.58 0.83 0.58
E1 0.00 0.00 0.67 0.58 0.67 0.58
E2 1.00 1.00 1.67 1.15 12.00 6.08

E4a 0.00 0.00 0.00 0.00 2.67 2.08
Ball B

E4b 0.33 0.58 0.33 0.58 4.00 1.73
E1 8.00 13.00 0.33 0.58 1.67 0.58
E2 1.00 1.00 2.33 0.58 3.67 1.15

E5a 0.33 0.58 0.67 0.58 4.67 1.15
Ball C

E5b 0.33 0.58 0.33 0.58 4.00 1.00
Overall 1.15 1.72 0.85 0.58 3.29 1.52

A. Estimating Trajectory and Spin for Ball Throws
We report mean reprojection errors for the estimated trajectories
as a metric to establish the quality of our estimated trajectories.
Reprojection error for an estimated 3D point is defined as the Euclidean
distance between projections of the estimated 3D point and the actual
3D point onto the image plane. Table 2 shows reprojection errors
corresponding to trajectory estimation for Balls A, B and C for 3
ball throws each, in different environments. Care was taken to ensure
variety in the spin axis, especially in terms of the dominant spin axis.
A reprojection error of less than 10 pixels is observed on average for
Ball A with consistently low point-wise standard deviation (under
6 pixels). For Ball B and Ball C, the reprojection errors are under
13 pixels each with the corresponding standard deviations under 10
and 9 pixels respectively. Note that while the reprojection error is
still low for Ball B and Ball C, it is higher when compared to Ball
A. We attribute this to the lower contrast of the colours of Ball
B and Ball C with respect to the background. A similar trend is
observed in point-wise standard deviation as well. Additionally, note
that the reprojection errors are relatively higher in 𝐸3, 𝐸4 and 𝐸5
environments as compared to 𝐸1 and 𝐸2. We attribute this to the
windy outdoor conditions and the lightweight nature of the tripods
which results in small but perceptible movements of the camera.
More details are provided in supplementary Sec. S5.

Table 2: The mean reprojection errors (Rep. Err.) and standard deviations (in pixels) are
reported for the estimated 3D trajectories along with the estimated spin magnitude (in
RPM) and spin axis. Here, "Ball A - E2 - 3" refers to the third ball throw in environment
𝐸2 and so on.

Video Number
Trajectory Estimation Spin Estimation

Reprojection Error Standard Deviation Estimated RPM Estimated
NormalCam 1 Cam 2 Cam 1 Cam 2 Cam 1 Cam 2

Ball A - E1 - 1 2.39 2.52 1.35 1.42 635.29 635.29 [ 0.00, 0.99, 0.02 ]
Ball A - E1 - 2 3.10 3.54 2.16 2.59 553.84 553.84 [ 0.90, 0.06, 0.42 ]
Ball A - E1 - 3 3.34 3.51 2.03 2.12 600.00 600.00 [ -0.20, 0.19, 0.96 ]
Ball A - E2 - 1 2.32 2.13 1.08 0.99 218.18 218.18 [ -0.90, 0.42, 0.08 ]
Ball A - E2 - 2 2.36 2.13 1.27 1.15 288.00 288.00 [ 0.24, 0.84, 0.48 ]
Ball A - E2 - 3 4.83 4.83 2.18 2.01 327.27 327.27 [ -0.99, 0.11, -0.01 ]
Ball A - E3 - 1 5.89 6.28 3.83 4.44 342.86 352.94 [ -0.32, 0.90, -0.27 ]
Ball A - E3 - 2 8.69 8.36 1.01 1.35 310.34 338.03 [ 0.99, -0.06, -0.02 ]
Ball A - E3 - 3 8.58 9.57 4.73 5.59 363.64 363.64 [ -0.77, -0.43, 0.46 ]

Ball A (Overall) 4.61 4.76 2.18 2.41 - - -
Ball B - E1 - 1 7.39 5.64 5.21 3.82 250.00 250.00 [ -0.96, 0.24, -0.09 ]
Ball B - E1 - 2 7.37 5.56 4.76 3.63 428.57 461.53 [ 0.06, 0.98, 0.13 ]
Ball B - E1 - 3 12.4 9.40 9.20 6.88 462.09 500.00 [ 0.42, 0.89, -0.15 ]
Ball B - E2 - 1 4.10 3.90 2.56 2.44 248.27 252.63 [ -0.99, -0.02, 0.01 ]
Ball B - E2 - 2 6.14 5.96 3.75 3.67 189.47 184.61 [ 0.02, 0.95, 0.31 ]
Ball B - E2 - 3 6.26 5.98 3.14 3.02 156.52 156.52 [ -0.99, 0.07, -0.04 ]
Ball B - E4a - 1 9.83 9.75 4.44 4.41 230.77 230.77 [ -0.95, 0.27, 0.16 ]
Ball B - E4a - 2 10.36 10.30 3.08 3.00 250.00 250.00 [ -0.28, -0.93, 0.24 ]
Ball B - E4a - 3 10.33 10.19 5.04 4.98 260.87 240.00 [ 0.92, -0.38, -0.04 ]
Ball B - E4b - 1 10.46 10.33 5.22 5.05 285.71 285.71 [ 0.32, -0.91, 0.25 ]
Ball B - E4b - 2 9.72 9.62 6.41 6.27 240.00 272.72 [ 0.98, 0.08, 0.18 ]
Ball B - E4b - 3 8.60 8.64 4.34 4.26 181.81 176.47 [ 0.89, -0.33, -0.30 ]
Ball B (Overall) 8.58 7.94 4.76 4.29 - - -
Ball C - E1 - 1 7.67 7.70 5.78 5.75 230.77 230.77 [ -0.99, 0.01, -0.04 ]
Ball C - E1 - 2 4.44 4.35 3.64 3.53 300.00 315.79 [ 0.99, 0.09, 0.11 ]
Ball C - E1 - 3 1.55 1.59 0.87 0.89 171.43 200.00 [ 0.62, 0.66, 0.43 ]
Ball C - E2 - 1 7.97 8.31 3.93 4.09 266.67 266.67 [ 0.87, 0.44, -0.19 ]
Ball C - E2 - 2 8.29 8.64 4.14 4.31 288.00 288.00 [ -0.99, -0.02, -0.02 ]
Ball C - E2 - 3 11.48 12.09 7.19 7.60 313.04 300.00 [ 0.09, 0.37, -0.92 ]
Ball C - E5a - 1 8.83 9.86 7.03 8.22 260.87 260.87 [ 0.31, -0.95, -0.02 ]
Ball C - E5a - 2 7.77 7.26 4.95 4.80 193.54 195.65 [ -0.95, 0.01, 0.32 ]
Ball C - E5a - 3 10.53 10.62 7.16 7.67 187.50 222.22 [ 0.96, 0.21, 0.19 ]
Ball C - E5b - 1 10.96 10.95 3.33 3.32 285.71 279.07 [ 0.94, 0.34, 0.01 ]
Ball C - E5b - 2 10.51 10.53 5.84 5.86 206.89 214.28 [ -0.28, 0.92, 0.29 ]
Ball C - E5b - 3 8.97 8.78 3.78 3.69 214.28 240.00 [ -0.13, 0.94, -0.32 ]
Ball C (Overall) 8.25 8.39 4.80 4.98 - - -

Table 2 also reports the spin estimation results for the same ball
throws. Since our spin magnitude (RPM) estimation depends on
only one camera, we individually estimate the RPM from both the
cameras. As can be seen from the Table 2, results from both the
cameras are consistent for each of the ball throws. The estimated
spin axis is also consistent with what is observed visually in terms
of the dominant spin axis.

To investigate the impact of using multiple distinct features in spin
estimation, we experimented with Ball A by sticking three differently
colored circular markers on it. The standard deviation decreased by
7.93 when using two markers as opposed to using only one marker
for spin magnitude estimation while a decrease in average standard
deviation from [0.13, 0.07, 0.17] to [0.03, 0.03, 0.05]was observed
for spin axis. This clearly establishes increased robustness when
multiple features are used. Additional details and sample videos
corresponding to Table 2 are included in supplementary Sec. S3.

B. Validation
Since it is non-trivial to obtain ground-truth values for the estimated
trajectory as well as spin, we compare the results of our pipeline with
measurable quantities in a controlled setup for validation. Without
loss of generalizability, experiments were done only on Ball A.
Table 3: Ball A rotation validation results show consistency between the estimated
(Est.) and ground truth (GT) values for both cameras (L and R)

RPM (GT) RPM (Est. (L)) RPM (Est. (R)) Err. (RPM-L) Err. (RPM-R) Spin Axis (GT) Spin Axis (Est.) Err. ( Axis)
120 125.69 120.00 5.69 0.00 [ 0.71, 0.00, 0.71 ] [ 0.71, -0.03, 0.71 ] [ 0.00, 0.03, 0.00 ]
180 186.82 189.21 6.82 9.21 [ 0.92, 0.00, 0.38 ] [ 0.86, -0.19, 0.46 ] [ 0.06, 0.19, 0.08 ]
100 109.72 104.13 9.72 4.13 [ 0.00, 1.00, 0.00 ] [-0.01, 0.99, -0.08 ] [ 0.01, 0.01, 0.08 ]
240 257.14 250.79 17.14 10.79 [ 0.38, 0.00, 0.92 ] [ 0.32, 0.34, 0.88 ] [ 0.06, 0.34, 0.04 ]
140 144.80 149.14 4.80 9.14 [ 1.00, 0.00 , 0.00 ] [ 0.99, -0.01, -0.07 ] [ 0.01, 0.01, 0.07 ]

Overall Error (RPM) 8.83 6.65 Overall Error (Axis) [ 0.028, 0.116, 0.054 ]

For 3D localization, we validate using three quantities - (i) The
reprojection error between the 2𝐷 ball centers and the triangulated
3D ball centers was calculated and this was found to be low as
already reported in Table 2. (ii) Reprojection error was calculated
between ten fixed and measured 3D points on the ground and wall
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surfaces and their triangulated counterparts, and the mean error value
was found to be 1.8 pixels which is low as well. (iii) Gravitational
acceleration was estimated by double differentiating the ball’s 3D
position with time for six ball trajectories and an average value of
9.18𝑚/𝑠2 with standard deviation 0.747 was obtained. Note that this
is within 1𝑚/𝑠2 difference from the standard value of 9.8𝑚/𝑠2.

We validate our spin-estimation pipeline by mounting Ball A on
a rotating motor with controllable speed. To verify the spin axis,
we align the rotating motor shaft to different angles with respect to
the world coordinates and compare the results as shown in Table
3. A maximum deviation of 17 RPM is observed while the major
rotational axis remains consistent with the measured ground truth.
Additional details are included in supplementary in Sec. S2.

C. Comparisons with Learning-based Approaches
We compared our proposed ball detection approach with three existing
DL based approaches [20]–[23] for football detection to establish
superior generalizability across views and scales. [20], [23] are trained
on 20, 000 frames and 11994 frames of broadcast videos of football
matches. [21] is a standard YoLoV5 object detector trained on a
curated dataset [24] containing 1340 football images captured in the
wild while YoLoV9 [22] is trained on the MS-COCO [5] dataset.
The quantitative results are reported in Table 4 for two videos for
moving ball detection. Video 1 corresponds to the "Ball A - E1 -
1" video reported in Table 2, and Video 2 is a publicly available
clip 1. The numbers denote the percentage of frames where the
ball was successfully localized using each of the approaches. A
ball is considered successfully localized if the center of the fitted
circular contour lies on the ball in frame. Our approach significantly
outperforms both methods on the videos. While our approach is
able to detect and localize the ball throughout, [21] can localize the
ball only at closer range while [20], [23] localizes only at higher
depths. We attribute this to the fact that at higher depths, the football
occupies a very small area of the frame like broadcast videos which
[20], [23] were trained on. On the other hand, the images used for
training YoLoV5 have the football occupying a much larger area of
the frame which results in poor performance at higher depths. While
[22] detects the ball better, there is still scope for improvement.
Qualitative results for Video 2 are included in supplementary.
Table 4: Quantitative comparisons for ball localization. The numbers denote the percent
of frames where the ball was successfully detected.

FootAndBall [20] YoloV5 [21] YoloV9 [22] WASB[23] Ours
Video 1 0.0 0.04 0.63 0.0 0.99
Video 2 0.18 0.39 0.47 0.06 0.89

IV. LIMITATIONS
Our approach uses MoG during ball localization which encodes

motion information and may lead to issues when moving humans
are visible in the frames wearing clothes of similar color. In such
situations, DL methods which are much better at detecting humans
than small balls, can be leveraged to mask out the moving humans and
the ball can still be detected using our approach. See supplementary
for additional information.
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